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1. INTRODUCTION

Let X be a compact subset of the real line and denote by C(X) the class
of all real valued continuous functions defined on X. Norm C(X) with the
uniform norm, i.e., for all fE C(X), 11fll = max{[ j(x) I : x EX}. Let n be a
positive integer and set RnO(X) = {lip: p E JIn , p(x) > 0, \:Ix E X} where JIn
denotes the set of all real algebraic polynomials of degree ~n. Note that
RnO(X) consists ofthe positive elements of the set usually denoted by RnO(X).

In this paper, we shall study the problem of approximation of positive
functions in C(X) by elements of RnO(X). The emphasis of this study is as
follows. First, we wish to contrast this setting with that of approximation by
elements of Rnm(x), m ;?;: 1, n ;?;: I, in C(X). Basically, there is one major
difference, namely, that existence holds for this case; whereas, this is not true
for Rnm(x), m ;?;: I, n ~ 1 and X not an interval. In addition, when X is not
an interval the proof of existence is very long and tedious. Next, we shall
observe that the usual characterization (alternation) and uniqueness results
hold for this problem using the standard arguments. Finally, we shall discuss
the computation of best approximations from RnO(X).

These results will be used in a forthcoming paper on uniform approxima­
tion on [0, 00) with reciprocals of polynomials. See [3,4, 5, 9, 15, 19] for
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various recent studies concerning certain aspects of this problem. Since
we are interested in applying these results to this setting, we shall approximate
III in what follows.

2. EXISTENCE

As noted in the introduction, it is well known that best rational approxi­
mants from R,/"(X), In L n L and X not an interval need not exist.
Indeed, let X be a finite subset of [0, I]. such that 0 E X and card(Xl
n + 111 -1·2. Define IE C(Xl--....- R."II/(X) by flO) I and lex) 2 for
x EX,......, {O}. Let rl,·(x) be defined by rdx) (2kx 1)!(k" I l. Then
lim!..", I!I - ric 0 showing that no best approximation exists for I from
Rr/"(X).

In what follows, let n be a nonnegative integer and let X be a compact
subset of the real line with card(X) :c n + 2. Set K {p E nil :p(x) O.
Ifx EX}, letl E C(X),f~ K withf(x) :> 0 for all x E X and set Ll inf{l( I I)
(llp)ll : p E K}. We have the following lemma.

LEMMA I. Let X,.t: Ll he as defined above. Then Ll O.

Proof Suppose Ll O. Then, setting (lip) (c!q), c a constant, (jc'K,

II q II == I, there is a sequence ofpolynomials {q,,} C K such that I :(lifj
(cnlqn)II-)- O. Since I Cn I I- (I!m), In min{lj(x)[: x E XL we may
assume that Cn -)- c* ~':; 0 and qll -* q* uniformly, with q* E lIn and q* 1.
We claim that c* :> O. Suppose c* 0, and let x E X be such that q*(x) 0
(such an x exists since q* ¥ 0 and card(X) ?c n- 2). Then we have

o

which is a contradiction. Hence c* O. Since cn!qll I +- I I!f we have
that q*(x) :> 0 for all x E X. Thus C I1 !qll -)- c*/q* c K uniformly and

I c*
1-4*

hencel = q*!c* E K, which is a contradiction. Therefore Ll O.

THEOREM I. Let n be a nonnegative integer and let X, K, j; and Ll he
defined as above. Then there exists a p* E K such that Io!.f) -- (I !p *1I I Ll.

Proof Since X is compact, lOon X, there exist positive constants m.
M such that In ~ I/j(x) ~ M for all x E X. For p E K we write lip c!q
where q(x) :> 0 for all x E X. C 0, and II q I! 1. Then, as in Lemma l,
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there exist sequences {cn}, {qn} such that Cn > 0 for all n, qn(x) > 0 for all
x E X with II qn II = 1 satisfying

(i) 1 + .1 ;? IIO/f) - (cn!qn)ll,

(ii) limn->oo 11(1/f) - (cn!q,,)11 = .1,

(iii) I Cn I ~ 1 + .1 + M.

By extracting subsequences {cn } and {qn} of {cn} and {qn}, respectively,
there exists c* ;? 0 and q* E IIn ;ith q*(x) ~ 0 for all x E X and II q* II = 1
such that Cn ---+ C* and qn (x) ---+ q*(x) uniformly in X.

We now vclaim that c* > O. Indeed, suppose C* = 0 and let Z =
{Xl"'" Xk} C X, k ~ n, be all the zeros of q* contained in X. Now, if Z = 0,

then q*(x) > 0 for all x E X holds and we have for each x E X

Thus, taking p = 2/.1, the inequality

holds for each x E X. Since pE K, this contradicts our assumption that
infpEII {11(l/f) - (l/p)11 :p E K} = .1 > O. Therefore, we assume that Z ~ 0.

Partiti~n Z into two subsets Z = I u J where I = {x E Z : x is an isolated
point of X}, and J = Z "" 1. Now, for x EX"" Z we have that q*(x) > 0 so
l/f(x) ~ .1 holds by (1). Also, since fE C(X) and Y E J implies that Y is a
limit point of X"" Z we have, by continuity, that l/f(y) ~ .1 holds. Now,
if I = 0, then our argument for the case Z = 0 yields our desired contra­
diction. Hence, let us assume that I = {YI < Y2 < ... < y,,}, P, ;? 1. Now,
let a < b be such that X C (a, b). Construct open intervals (cxv , f3v) as follows
(observing that X"" I is a compact subset of X): set CXI = max{a, max{x:
x EX"" I and x < YIn and f31 = min{b, min{x: x EX"" I and x > YIn. If
f31 > Y" stop this process with the interval (CXI' f31)' If f31 < Y" , then there
exists an integer iI' 1 ~ il ~ P, - 1 such that Yi < f31 < Yi +1 . In this case,

1 1

set CX2 = max{x: x EX"" I and x < Yi +1} and f32 = min{b, min{x: x EX"" I
1

and x > Yi +1n· Note that we must have CX2 ~ f31 as f31 EX"" I and f31 < Yi +1'
1 1

Once again, if f32 > Y" , stop this process. If f32 < Y" , we continue and, since
p, is finite, this construction must end after, say v ~ p, steps, giving v pairwise
disjoint open intervals (cxI, f31)"'" (cxv ,f3v) where a ~ CXI < f31 ~ CX2 <
f32 ~ ~ CXv < f3v ~ b, (CXi' f3i) () I ~ 0 and (CXi' f3i) () (X"" 1) = 0 for
i = 1, , v. For convenience, let us assume that (cxr , f3r) () I = {Yi +1'"'' Yi }

r-l r

for r = 1, ... , v with io = O. Now we will construct a new set of points I'
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where l' n X == as follows. If (oc, , Pl') is such that a < a l' , PI' < band
(ocr, Pr) n I === {Yi'_l+l ,... , Yi) consists of an odd number of points, then
set Y; == i(Pr +Y,) and require that y;' E 1'. Therefore, l' can consist of at
most ~ points. For ~onvenience, set l' '{h', ... , y.,'J, Y v, if l' eft . Also,
in this case, note that q*(x) must vanish at Y';,-l i I, ... , Y\ and q*(a,.) 0,
q*(Pr) > 0 both hold implying that q* must have either one Yi , i"-I I
i :s:; i.,. as a zero of even order (at least two) or have at least one more simple
zero in (ocr, Pr). That is, q* must have at least ir -- ir- 1 I zeros in (oc,. Pr)'
Set

y

vex) ~~ II (Y/
i=--=-l

I,

X),

l' =-

(2)

Next, we shall construct a sequence ofpolunomials {'PiN}:Z;cd corresponding
to each interval (ai, PJ, il,... , v. First, set

f(Yj)w, =- ..----~- -------------- ..-----------
J 1'1 Il'I (y y) H'. (.I' y) i v(y)

Ic_l J l I=J~ I I } J

(3)

for j == I, ... , fL where Il~ I1~-i-l = I and note that Wj -~ 0 as N-· J~.
Let us first consider the interval (0'1 , PI) where (ex l , PI) n 1 {h .... , Yi

1
;'

I :s:; i1 :s:; fL. The precise form of 'P/v will depend upon the structure of
(oc1 , PI) although, in all cases, the polynomials ({!] N will have certain essential
properties. Therefore, we must consider cases.

Case 1. OC1 = a, i l 2m -i - I, In O. Note that in this case we must
have PI < b since card(X) ;:'c n -I' 2. Furthermore, this interval gives no
contribution to T. Set

1n

({IN(X) == - n [(hill -- W 2J+d -- x] n [(Y~j + w~J x]
jooU I

where Wj is defined by (3). Now, since w, -~ 0 as N -->- ro for all j and a
0'1 < h < ... < Yi < PI , we can select an I'll such that 1'1 ;;-= I'll implies that

1

Thus, for 1'1 ;?: 1'11, we have that 'PI N(X) is positive at Yl ,... , Yi
1

, and 'P/'(x) > 0
for x ;?: PI (which implies that 'PI N(X) > 0 for all x E X). Let pes) denote the
number of zeros of q*(x) in the interval (lX s , Ps), s I, ... , v where we count
a zero of order p as p zeros. Then we have a'PI N p(l) in (lXI' PI)' Also,
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setting Ei = Yi - Wi for i odd and Ei = Yi + Wi for i even and noting that
Ei -+ Yi as N -+ 00, we have, for I :::( i :::( i1 , that

ni
-

1 n"i~l (y, -- Yi) H+l (Yi - Yi) I v(Yi)1
fiCy .) ni-l (y. - E) ni, (E. - y.)

~ j=l'~ J j=i+l J ~

Now, using (2) and (3), we have

u v

IjNpIN(Yi) -+ !(Yi)-l n (Yi - Yi) n (y;' - Yi)
i~il+l i~l

Also, for x E X satisfying x > Yi , we have (since i1 is assumed odd) that
. ·1·

PIN(X) = - n;:l (Ei - x) = n;:l (x - Ej) -+ n;:l (x - Yi) as N -+ 00.

Case 2. 1:1:1 = a, i1= 2m, m > 1. Once again we have fJl < band (1:1:1> fJl) (')
r = 0. Set PIN(X) = n;:~l (Y2j+l + W2j+l) - xl n;':l [(Y2i - W2i) - x).
Again it follows that we can select an N1 such that N > N1 implies that
PIN(Yi) > 0, I :::( i ~ i1 , PIN(X) > 0 for x> fJl (which implies that PIN(X) > 0
for all x E X) and 0PIN :::( p(J). Setting "7, = Yi + Wi for i odd and "7i =

Yi - w;for i even, we have for Y" I :::( i :::( iI' that IINpIN(y,) = I/(N( -1)i-1
Wi n;:li# ("7j - y,». Again, using (2) and (3) we have (since i1 is even) that
IINpIN(Yi) -+ !(Yi)-l n~~il+l (Y3 - Yi) n;~l (Y/ - Yi) as N ~ 00. Also, for
x E X with x > Yi , ' we have that PIN(X) = n;:l ("7i - x) = n;:l (x - "7i)-+
n;:l (x - Yi) as N -+ 00. Note that PIN has the same limit, as N -+ 00, for
each of these two cases.

Next we consider the case where 1:1:1 > a. In this case, the contribution
of PIN is identical with that of PrN for (I:I:r , fJr), r = 2, ... , v. Thus, we consider
the construction of PrN for (I:I:r , fJr) where r = I, ... , v. Here we must consider
an additional four cases. For convenience set I ,= i r - 1 and k = i r - i r - 1 so
that (I:I:r , fJr) n I = {Yi +l , ... , Yi} = {Yl+l ,... , Yl+k}'

1'-1 T

Case 3. I:I:r > a, fJr < b, r == 1, ... , v; k = 2m + I, m > O. Note that in
this case Y;r == Y;+7' E I' and per) :;:: 2m + 2. Set

m m

PrN(x) = (Y;+k - x) n [(Yl+2i+1 + Wl+2i+l) - xl n (YI+2i - Wl+2i) - xl·
j~O j~l

(4)

Once again, there exists an N r such that for N :;:: N r we have
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(i) 'PrN(x) > 0, x ,S:; l"le r ,

(ii) 'PrN(Yi) 0, i I -+ I, ... , 1-+ k,

(iii) 'PrN(x) > 0, x ;::~ Pr.

(Note that (iii) follows from the even number of linear factors in (4), all of
which are negative.) Therefore, 'P,N(X) > ° for all x E X. Setting Pi
Y!+i -I- Wl+i for i odd and Pi ~ Yl+i - Wl+i for i even, we have for x O'r

r{/V(x)
k

TI (Pi ~. x)( Y;H ~- x)
i~-l

"
. >- TI U'i - x)(Y;, _. x)

j-co-i,._l--f 1

as N --+ w.

Similarly for x P,. (since k is odd)

'PIN(x)
k

TI (Pi
'1,-"1

x)

'1/

->- TI (x - Yi)(X -- .1';)
j -~ir-l : 1

as N _..>- w.

Finally, for Yi, i'~l -+ 1 i" we have, usmg (2) and (3) (assuming
v~ ~= vo' for some e, e r),
. 'lr 0/

I!N 'Pr N( )',)

i iT _1-1

TI (Pi- .1'J
I,

TI (Pi 1
-1

v·)( v~ - ),.).
~ 1. ._ I,. Z

ir-l Il

>- I( y,)-l TI ()', -~ .v,) TI (.1'i
r.,.·d jc,=iri-l

as N -+ W.

0···1

yJ TI (Yo'
j··l

y

.1'i) TI (y/ -- y/)
j~O+l

Case 4. '''r a, Pr < b, k 2m, /II ? 1. Note that in this case (ex,. , Pr)
gives no contribution to I'. Set

m--l

TI [(YI-2i I
j~O

W, :!}+l)

',jl

x] n [(YI+2j
j~l

x].
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As before, there exists an N r such that N ~ N r implies rprN(x) > 0 for all
x E X. Using Pi as defined in Case 3, we have, for x ~ exr rprN(x) =
0~~1 (Pi - x) -+ O~:i +1 (Yi - x) as N -+ 00, and for x ~ fir rprN(X) =

k i '-1
Oi=1 (Pi - X) -+ Oi:ir-lH(X - Yi) as N -+ 00. Finally, for Yi, ir-1 + I ~
i ~ ir , we have, using (2) and (3).

ir_l I-l. 'Y

-+ f(Yi)-1 Il (Yi - Yi) Il (Yi - Yi) III Y;' - Yi I
j=1 j~ir+l j~1

as N --+ 00.

Case 5. exr > a, fir = b, i,- ir- 1 = k = 2m + I, m ~ O. Note that in
this case r = v, iv = fL, and (exv , f3v> gives no contribution to T. Set rpvN(x) =
0;:0 [(YH2i+l + WH2i+l) - x] n;:1 [(Yl+2i - Wl+2i) - x] where Wi is defined
by (3). As before, there exists an Nr such that N ~ N r implies rpvN(x) > 0
for all x E X. Using Pi as defined in Case 3, we have for x ~ exv , rpvN(x) =
n:~1 (Pi - x) --+ 0:~iv_l+1 (Yi - x) as N --+ 00. Also, for Yi , i'-1 + 1 ~ i ~ fL

]

-1

(Pi - Yi)

iV_l Y

-+f(Yi)-1 Il (Yi - Yi) III Y;' - Yi 1
i~1 i~1

as N -+ 00 using the same argument as before.

Case 6. exr > a, f3r = b (r = v, i, = fL), fL - ir-1 = k = 2m, m ~ 1.
Again, the interval (exv , f3v) gives no contribution to T. Set rpvN(x) =

m-l m (
Oi~O [(YH2i+l + WH2i+l) - x] ni~1 [ Yl+2i - Wl+2i) - x]. As before, we

k
have rpvN(x) > 0 for all x E X. rpvN(x) --+ ni~iv_1+1 (Yi - x) as N --+ 00, for
x ~ exv . For Yi, iv-1 + 1 ~ i ~ fL, IfNrpvN(Yi) --+ !(Yi)-1 n:~11 (Yi - Yi)
0;=11 Y;' - Yi 1· Recalling that pes) is the number of zeros of q*(x) in the
interval (exs , (38)' s = 1, ... , v, we observe that in Cases 4,5, and 6, orprN(x) ~
per). Therefore, we set PN(X) = n:~1 rpsN(X), where rpsN(X) is constructed with
respect to the interval (exs , f3s), s = 1,... , v as described above (depending
upon (ex., f3s». Since Orp.N(S) ~ pes), these intervals (by construction) are
pairwise disjoint and II q* Ilx = 1, we have that OPN ~ oq*. Also, there exists
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an N such that N ~ N* implies that 'PsN(x) 0 for all x E X, S
so that PN E K for N ~ N*. Furthermore, for x E X,,-, I,

I, ... , ~,

, I . (.. "
= CU~ N) TI i Yi

\loc··1

xi TI J',
/--1

') -1
X o

since the quantity in parentheses on the right is not equal to zero. Also, since
dist(I u r, x,,-, 1) c 0, we have that the above convergence is uniform
in X,,-, 1. Finally, for Yi E 1 (say J'i E (err, (31')) we have that

Thus, by selecting N N* sufficiently large so that i [llf( y.,)] - [1/NfJN( y;)]
Ll, i = 1, ... , fL and iI/NpN(X): < Ll holds for all x E X,,-, I we have that
li(l/f) -(l/NpN)I!X <Ll (recall that II/f(x): :-::--;;Ll on X"-'l), which is our
desired contradiction. Hence, we must have c* O. Thus, q*(x) 0 for all
x E X. Furthermore, (cv/qJ --+ (c*/q*) uniformly in X as v --~ cx) so that
IIO/f) - (c*/q*)I! C~ liml'~'O) I:(I/f) (cv/qv)i:= Ll. This, in turn implies that
p* ~= q*/c* is our desired best approximation from K.

Finally, we would like to close this section with results on characterization
and uniqueness. Using the standard argument [I] for alternation of best
rational approximants on an interval we have:

THEOREM 2. Let fE C(X), where X is a compact subset of the real line.
Let n 0 be a given integer and set RnO(Xl {I !p(x): p E JIn ' pix) 0,
for all x E X}. Assume l/frt RnO(X). Then a necessary and sufficient condition
that I /p* is a best approximation to 1!lon Xfrom RnO(X) is that the error curve
e*(l/'f) I/l-l/p*alternateatleastl1 I times.

It should be remarked that this theorem is also valid for Rnm(x) {r
p/q : p E JIm, q E JIn , q 0 on X, and (p, q) ~c I} where (p, q) denotes the
greatest common polynomial divisor of p and q with n + m -+- 2- d
alternating extreme points needed, d= min(m (P, 11- cq). The proof
of sufficiency follows as in the R"m[a, b] case [1]. The arguments of necessity
also apply here; however, a certain amount of care must be taken. Namely,
if one assumes that r* = p*/q* is a best approximation having less than the
required number of alternations then r~·c (p* - y/p)/(q* - y/q) as defined
in [1] can be shown to be a better approximation for sufficiently small I Y/ I.
In addition, if r is not reduced, then it also can be shown that for sufficiently
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small I YJ I it is possible to reduce r to lowest terms so that the resulting
rational function has a positive denominator on X and hence belongs to
R nm(x). This proof can also be used to establish uniqueness.

If one drops the requirementthat (p, q) = 1 and q > 0 on X then Professor
C. B. Dunham has informed us that this alternation behavior is no longer a
necessary condition. Also, we would like to thank Professor Dunham for
pointing out the reducing difficulty to us.

Likewise, one can prove a strong uniqueness result for RnO(X). The proof is
similar to the usual proof by contradiction for an interval. However, it is
necessary to refer to the existence argument to guarantee that a particular
cjq(x) is such that c > 0 at one point of the argument. A copy of this proof
is available upon request.

THEOREM 3. Let f E C(X) satisfy f(x) > 0 for all x E X. Then there
exists a unique best approximation IIp* to Ilf from RnO(X). Furthermore,
there exists a positive constant y = y(.f) such that for each lip E RnO(X),

(strong uniqueness).

3. COMPUTATION

In this section, we wish to describe three possible algorithms for computing
best approximations to I/J,f(x) >0 for all x E X, from RnO(X). The algorithms
are Remes, differential correction, and a hybrid algorithm which is a com­
bination of the first two. In a future paper we shall report on numerical
experiments involving these algorithms. In what follows, we shall assume X
is a finite set.

The Remes algorithm has been widely studied and appears often in the
literature. Two explicit papers where the Remes algorithm is proposed for
calculating best rational approximations are Cody, Fraser, and Hart [8],
and Ralston [16]. The Remes algorithm consists of two main operations:

(i) the solution of a nonlinear system, and

(ii) the exchange of a certain set of points.

It is known that in general the nonlinear system may have many solutions
(and sometimes none of which belong to RnO(X)) [10, 17, p.104]. Thus
Remes could fail to run due to its inability to either solve this system or by
returning a solution to this system which is not in the class RnO(X). (A second
problem with the Remes algorithm will be mentioned later.) Even if the
algorithm is able to solve this system at each step with a solution in RnO(X),
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convergence can be guaranteed only if the algorithm was initialized with
a sufficiently "good" starting approximation (for the case X is an interval).
In a recent study by Lee and Roberts [13], it is observed that the Remes
algorithm is very fast when it converges, but may fail to converge. Also,
observe that in the theory we are considering here every function being
approximated is normal in the usual sense.

The differential correction algorithm was originally introduced by Cheney
and Loeb [6]. This algorithm was shown to have very desirable convergence
properties by Barrodale, Powell, and Roberts in [2] and a Fortran listing
of it can be found in [12]. In the setting considered here this particular
algorithm possesses guaranteed (quadratic) convergence to the desired best
approximation in RnO(X). However, in practice, if X is large it is sometimes
necessary to solve this problem on a subset of X and then initialize the full
problem with this solution. This is due to the fact that this method involves a
linear programming subroutine which is sometimes numerically difficult
to solve without a good initialization. Also, due to the inclusion of this linear
programming subroutine, this algorithm is quite slow (some 19 times slower
than Remes (when Remes converges) in tests done in [13]).

The final algorithm that we wish to mention for this problem is a hybrid
of the above two. Precisely, we propose to replace the step of the Remes
algorithm where a nonlinear system is solved to get a best approximation
on a reference set (smaller than X) with the differential correction algorithm
applied to this reference set to give the desired best approximation on this set.
This method will eliminate the problems of the Remes algorithm associated
with the solution of the nonlinear system in that a best approximation on the
reference set (which is positive on the reference set) will be found. However,
there is still no guarantee that the best approximation on a given reference
set found by the differential correction algorithm will actually belong to
RnO(X) (i.e., it may fail to be positive (or defined) on some points of X not
in the reference set). In fact, we have encountered such examples in testing
our hybrid algorithm and these examples have given rise to a second problem
in the Remes algorithm. Namely, the exchange procedure cycled.

Thus, it is also necessary to modify the exchange procedure. At present
we are testing two modified algorithms. In order to describe these modifica­
tions, let us assume that we are at the kth step of the iteration and suppose
that the best approximation r

"
.~c l/h on the reference set X" (n -+ 2 points

from X) has been found by the differential correction algorithm.
The first modified exchange algorithm is as follows. Perform a multiple

exchange in the usual manner only among those points of X where r" 0
holds. If rk is not the best approximation on the set of points where it is
positive then a new reference set is obtained and the algorithm proceeds
to the differential correction phase to find the best approximation on this
new reference set. If rk is the best approximation on the set of points where
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it is positive then terminate the algorithm if rk(x) > 0 for all x E X (rk is the
desired best approximation on X) or adjoin to the set X k , Y E X where
Pk(y) = min{pk(x): x E X}. Note that Pk(y) <. 0 must hold in this case.
Set X~+l = {y} U X k and apply the differential correction algorithm to this
set of n + 3 points finding the best approximation rk+1 on it. Next, reduce
X~+l to a subset ofn + 2 points, Xk+1 , where Xk+1 is chosen so that alternation
holds on X k+1 . Now repeat the exchange procedure on X k+1 with respect to
rk+l .

The second modified exchange algorithm is basically a reordering of the
above one. In particular, if rk the best approximation on X k is positive on all
of X then we proceed with a multiple exchange in the usual manner. If
r k is not positive on all of X then we adjoin y E X to X k precisely as above,
getting X~+l and proceed as in the above algorithm.

One can prove that in both of these modified algorithms, cycling cannot
occur and that global convergence holds for X finite (i.e., error of approxima­
tion on successive reference sets strictly increases). In a future paper we shall
give a detailed description of these two algorithms and report on the results
of our numerical testing of them. Also, we are studying the extension of these
ideas to R nm(x) and will also report on this at that time.
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